Files
whisperclient/app.py
Xav 73ddf4661c
All checks were successful
Build and Push whisper-client / build-and-push (push) Successful in 58s
init
2024-03-06 11:53:36 +01:00

237 lines
8.1 KiB
Python

from flask import session, Flask, render_template, request, jsonify, redirect, url_for, session, send_from_directory, make_response
import requests
import os
import re
import markdown
import yt_dlp
from datetime import datetime
from werkzeug.utils import secure_filename
from dotenv import load_dotenv
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads/'
app.config['MAX_CONTENT_LENGTH'] = 32 * 1024 * 1024 # 16 MB limit
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
FLASK_SECRET_KEY = os.getenv('FLASK_SECRET_KEY')
if not (OPENAI_API_KEY and FLASK_SECRET_KEY):
from dotenv import load_dotenv
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
FLASK_SECRET_KEY = os.getenv('FLASK_SECRET_KEY')
if not (OPENAI_API_KEY and FLASK_SECRET_KEY):
raise Exception("FLASK_SECRET_KEY or OPENAI_API_KEY not found in the environment or .env file")
app.secret_key = FLASK_SECRET_KEY
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
downloads_path = os.path.join(app.static_folder, 'downloads')
os.makedirs(downloads_path, exist_ok=True)
@app.route('/youtube', methods=['POST'])
def download_youtube_audio():
youtube_url = request.form['youtube_url']
summarize_bool = request.form.get('summarize', 'false')
audio_file_path = download_audio_from_youtube(youtube_url)
if audio_file_path:
transcription = transcribe_audio(audio_file_path)
if summarize_bool:
transcription = summarize(transcription)
session['youtube_transcript']=transcription
return redirect(url_for('index'))
else:
return "Failed to download the audio from the provided YouTube URL."
def download_audio_from_youtube(url):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'uploads/%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
try:
info_dict = ydl.extract_info(url, download=True)
audio_file = ydl.prepare_filename(info_dict)
return audio_file
except Exception as e:
print(f"Error downloading audio: {str(e)}")
return None
@app.route('/')
def index():
files = os.listdir(downloads_path)
files = [file for file in files if file.endswith('.mp3')]
# Retrieve the transcription from query parameters, if present
transcription = markdown.markdown(request.args.get('transcription', ''))
download_url=request.args.get('download_url', '')
youtube_transcript = markdown.markdown(session.get('youtube_transcript',''))
return render_template('index.html', transcription=transcription,download_url=download_url, files=files, youtube_transcript=youtube_transcript)
@app.route('/upload', methods=['POST'])
def upload_file():
if 'file' not in request.files:
return redirect(request.url)
file = request.files['file']
if file.filename == '':
return redirect(request.url)
if file:
filename = secure_filename(file.filename)
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(file_path)
transcription = transcribe_audio(file_path)
# Redirecting to the index route with the transcription result
return redirect(url_for('index', transcription=transcription))
def beautify_text(text):
api_url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
payload = {
"model": "gpt-4-turbo-preview",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": f"Rend ce texte plus aéré et lisible, mais ne le résume pas et ne le tronque pas: {text}"
}
]
}
response = requests.post(api_url, json=payload, headers=headers)
if response.status_code == 200:
response_data = response.json()
# Extracting the beautified text from the response
beautified_text = response_data['choices'][0]['message']['content']
return beautified_text
else:
return f"Failed to beautify text. Status code: {response.status_code}"
def summarize(text):
api_url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
payload = {
"model": "gpt-4-turbo-preview",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": f"Résume ce texte, et s'il n'est pas en français, traduis-le: {text}"
}
]
}
response = requests.post(api_url, json=payload, headers=headers)
if response.status_code == 200:
response_data = response.json()
# Extracting the beautified text from the response
summarized = response_data['choices'][0]['message']['content']
return summarized
else:
return f"Failed to summarize text. Status code: {response.status_code}"
def transcribe_audio(file_path):
headers = {
'Authorization': f'Bearer {OPENAI_API_KEY}'
}
# Assuming 'file_path' is the path to the audio file you want to transcribe.
try:
model_parameters= {"model":"whisper-1", "language": "fr"}
response = requests.post(
'https://api.openai.com/v1/audio/transcriptions',
headers=headers,
files={'file': open(file_path, 'rb')},
data=model_parameters
)
if response.status_code == 200:
response_json = response.json()
transcription_text = response_json.get('text', 'Transcription not found or not available.')
return transcription_text
else:
error_message = f"Failed to transcribe audio. Status code: {response.status_code}."
try:
response_json = response.json()
if 'error' in response_json:
error_detail = response_json['error']['message']
error_message += f" Error detail: {error_detail}"
except ValueError:
error_message += f" Response: {response.text[:200]}..."
return error_message
except Exception as e:
# Catch any other exceptions, such as network issues or file errors
return f"An exception occurred: {str(e)}"
def sanitize_filename(text):
"""
Sanitize the text to make it safe for use in a filename.
Remove non-alphanumeric characters and replace spaces with underscores.
"""
text = re.sub(r'\W+', ' ', text)
text = text.strip().replace(' ', '_')
return text
@app.route('/synthesize', methods=['POST'])
def synthesize():
text = request.form['text-to-synthesize']
selected_voice = request.form.get('voice', 'nova') # Default to 'nova' if not specified
file_path = synthesize_speech(text,selected_voice)
if file_path:
filename = os.path.basename(file_path)
return redirect(url_for('index', download_url=filename))
def synthesize_speech(text, voice="nova"):
first_words = ' '.join(text.split()[:5])
sanitized_text = sanitize_filename(first_words)
current_datetime = datetime.now().strftime('%Y%m%d-%H%M%S')
filename = f"{sanitized_text}_{current_datetime}.mp3"
file_path = os.path.join('static', 'downloads', filename)
api_url = "https://api.openai.com/v1/audio/speech"
headers = {
"Authorization": f"Bearer {OPENAI_API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "tts-1",
"input": text,
"voice": voice,
"response_format": "mp3",
"speed": 1
}
response = requests.post(api_url, json=data, headers=headers)
if response.status_code == 200:
file_path = os.path.join('static', 'downloads', filename)
with open(file_path, 'wb') as audio_file:
audio_file.write(response.content)
return file_path
else:
return None
if __name__ == '__main__':
app.run(debug=True)